Antimicrobial Properties of Azole Functional Silica Nanocomposites

Author:

Usul Sedef Kaptan1,Lüleci Hatice Büşra1,Ergüden Bengü1,Aslan Ayşe12ORCID

Affiliation:

1. Department of Bioengineering Gebze Technical University Kocaeli Turkey

2. Institute of Energy Technologies Gebze Technical University Kocaeli Turkey

Abstract

AbstractSilica nanoparticles have become more attractive due to their surface characteristics, versatility, biocompatibility, and morphological and physicochemical properties. For this reason, their use in biological applications has been expanding in recent years. In this study, after functionalizing silica nanoparticles with glycidyl methacrylate monomer, nanocomposites were formed by attaching 1,2,4‐Triazole, 3‐Amino‐1,2,4‐Triazole, and 5‐Aminotetrazole particles to the surface. Notably, the thermal degradation temperature of all nanocomposites was determined to surpass 200 °C. However, it is worth mentioning that despite the favorable water uptake rates observed for MT(7.64 %) and M3(5.98 %) nanocomposites, MT did not exhibit resistance against Fenton chemicals and experienced degradation. It is important to note that the material loss in M3 nanocomposites is minimal, measuring less than 1 %. In order to reveal the antifungal and antibacterial activity of the synthesized nanoparticles, Minimum inhibitory concentration(MIC), as well as Minimum Fungicidal Concentration(MFC) against the yeast strain Saccharomyces cerevisiae, and Minimum Bactericidal Concentration(MBC) values against bacteria strains, Staphylococcus aureus, Enterococcus faecalis and Escherichia coli were determined. The findings of the study indicated that MP, M3, and M5 nanocomposites displayed a moderate level of antibacterial activity. It is noteworthy, however, that the antibacterial activity diminished when triazole was combined with MP at concentrations exceeding 100 mg/mL.

Publisher

Wiley

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3