Evaluating Terrestrol A as an Inhibitor Against SARS‐CoV‐2and Invasive Fungal Pathogens: A Comprehensive Computational Analysis

Author:

Singha Basanta1ORCID,Arora Bhoomika2ORCID,Karmaker Rituparna1ORCID,Richa Kikoleho3ORCID,Longkumer Naruti1ORCID,Thaer Abdulhameed Haider2,Abid Mohammad2ORCID,Bora Sinha Upasana1ORCID

Affiliation:

1. Department of Chemistry Nagaland University Lumami 798627 Nagaland India

2. Medicinal Chemistry Laboratory Department of Biosciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India

3. Department of Biotechnology St. Joseph University, Chumoukedima- 797115 Nagaland India.

Abstract

AbstractThe highly contagious SARS‐CoV‐2 virus, which initiated the COVID‐19 pandemic, has resulted in a significant loss of life worldwide. While vaccines and therapeutics have helped mitigate the impact of SARS‐CoV‐2, worries still persist regarding the emergence of Variants of Concern (VOCs). Additionally, the immunosuppressive effects of SARS‐CoV‐2 and steroid treatments increase susceptibility to complex fungal co–infections (e. g., aspergillosis and candidiasis), complicating treatment and escalating mortality rates. These circumstances highlight the urgent need for novel therapeutics. Thus, this study explores gentisyl alcohol and its derivatives as inhibitors of SARS‐CoV‐2 and fungal pathogens (Aspergillus fumigatus and Candida auris) via in‐silico methodologies. Initial multi–targeted docking simulations revealed that Terrestrol A(10) exhibited highly promising results, displaying the most favourable MolDock‐scores against all targets of interest, particularly against PDB ID 4K90 and 7CR5. The subsequent assessment of Terrestrol A(10) for their druglikeness, ADME, toxicity profiling, bioactivity, and PASS prediction also yielded highly favourable results. Structural dynamics analysis revealed stable yet slightly unfolding complexes, affirming their integrity. DFT studies also demonstrated favourable reactivity of Terrestrol A(10). This investigation identifies Terrestrol A(10) as a highly promising inhibitor against SARS‐CoV‐2 and fungal pathogens, laying the groundwork for in vitro and in vivo validation of its efficacy and clinical utility.

Funder

Science and Engineering Research Board

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3