In Situ Growth of Silver Nanoparticles on Graphene Oxide Towards Electrochemical Nitrite Detection

Author:

Kumar Narvdeshwar1,Maurya Angesh Kumar1,Bind Anuj Kumar1,Sonkar Piyush Kumar1ORCID

Affiliation:

1. Department of Chemistry MMV Banaras Hindu University Varanasi 221 005 Uttar Pradesh India

Abstract

AbstractNitrite is a significant environmental pollutant present in industrial waste water, food additives, detergents, and physiological systems. Therefore, an effective electrochemical sensor is essential for nitrite determination. Accordingly in this work, graphene oxide (GO) is functionalized with 3‐aminopropyltrimethoxysilane (GO‐APTMS) and 3‐mercaptopropyltrimehtoxysilane (GO‐MPTS). Further, Silver nanoparticles (AgNPs) were grown on GO‐MPTS (GO‐MPTS/AgNPs) and GO‐APTMS (GO‐APTMS/AgNPs). GO‐APTMS/AgNPs and GO‐MPTS/AgNPs are characterized by different spectroscopic and microscopic techniques such as Fourier transform infrared (FT‐IR), UV‐vis and powder X‐ray diffraction(p‐XRD), transmission electron microscopy(TEM) with selected area electron diffraction (SAED) and energy dispersive X‐ray analysis (EDAX). The nanocomposites, GO‐APTMS/AgNPs and GO‐MPTS/AgNPs are immobilized on glassy carbon (GC) electrode and abbreviated as GC/GO‐APTMS/AgNPs and GC/GO‐MPTS/AgNPs, respectively. It exhibits excellent electrocatalytic activity toward the oxidation of NO2. It shows the broad calibration range from 0.1 μM to 1 mM. The detection limit for NO2 is 90 nM and 80 nM for GC/GO‐APTMS/AgNPs and GC/GO‐MPTS/AgNPs, respectively. GC/GO‐APTMS/AgNPs and GC/GO‐MPTS/AgNPs exhibit sensitivity of 0.26 μA μM−1cm−2 and 0.46 μA μM−1 cm−2, respectively for NO2 determination. The modified electrode, GC/GO‐APTMS/AgNPs and GC/GO‐MPTS/AgNPs exhibit a wide calibration range, low detection limit, high sensitivity, selectivity, and stability for NO2 determination. Real sample analysis of tomato ketchup was performed at GC/GO‐APTMS/AgNPs and GC/GO‐MPTS/AgNPs with reliable recovery.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3