Solvent‐Free Synthesis of PMMA Particles using Tandem Acoustic Emulsification

Author:

Baissac L.1,Salvi T.1,Jurin F. E.1,Pochard I.1,Hihn J.‐Y.1,Buron C. C.1ORCID

Affiliation:

1. Institut UTINAM – UMR 6213 CNRS Université de Franche-Comté 16 route de Gray 25030 Besançon Cedex, Besançon France

Abstract

AbstractPoly(methyl methacrylate) (PMMA) colloidal particles are nowadays extensively used in several applications and more specifically in nanotechnology. Challenges are focused on the green synthesis process leading to size‐controlled particles. In the present work, PMMA particles were successfully synthesized using tandem acoustic emulsification in water without organic solvent, and cross‐linkers. 2,2′‐azobis(2‐methylpropionamidine) dihydrochloride (AIBA) or ammonium persulfate (APS), were used as initiators. Parameters leading to size control were clearly identified. Consequently, the cooling rate of the solution after polymerization time appears dominating. Particle size distribution was monodispersed for both initiators. A nonionic surfactant, Tween 20, was also added, leading to a decrease in size particle and an increase in synthesis yield. Depending on the chemical groups provided by the initiator, PMMA particles appear negatively or positively charged. These charges located on the particle surface led to stable particle dispersion by limiting aggregation phenomena. Tunable surface charge was confirmed across the elaboration of coatings only made of PMMA particles, using conventional techniques wherein charged species are needed (Layer‐by‐Layer assembly and electrophoretic deposition). PMMA particles were also labelled using fluorescent dyes. Fluorescein and Nile Blue A were loaded during the polymerization process to ensure a homogeneous distribution of the dyes within the particles.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3