Surface Modification of Nickel Titanate Nanocubes with Ultra‐small Palladium and Platinum Nanocrystals to Promote Solar Hydrogen Generation under Visible Light

Author:

Moses Yilleng T.12ORCID,Bastia Sweta13ORCID,Kumar Niharika13ORCID,Chaudhary Yatendra S.13ORCID

Affiliation:

1. Materials Chemistry Department CSIR – Institute of Minerals and Materials Technology Bhubaneswar 751 013 Odisha India

2. Department of Chemistry Kaduna State University Kaduna 800001 Nigeria

3. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002, UP India

Abstract

AbstractModification of nickel titanate nanocubes with metal nanocrystals is a viable approach to build a Schottky heterojunction for efficient hydrogen generation. The deconvoluted XPS spectrum of Pt 4 f (peaks at 72.0 and 75.5 eV corresponding to Pt° and Pt2+) and Pd 3d3/2 (335.4 and 336.7 eV corresponding to Pd° and Pd2+) and presence of lattice fringes in HRTEM at 2.19 Å of Pd°, reveal the formation of heterojunction in Pd−NiTiO3 and Pt−NiTiO3 nanocubes. The solar hydrogen generation investigation exhibits 2‐fold enhancement in HER (130 and 165 μmol g−1 h−1 while using Pt−NiTiO3 and Pd−NiTiO3, respectively) than that of bare NiTiO3 (88 μmol g−1 h−1). The creation of heterojunctions between titanates and metal nanoparticles, facilitating efficient transport of photo‐generated electron to empty or partially filled d or f orbitals of metals, thereby lowering electron‐hole recombination rate, as revealed by shorter average lifetime 29 ns (Pd−NiTiO3) than 64 ns (NiTiO3). Further, the unison of faster charge transfer kinetics as revealed by the Nyquist plot, more negative flatband potential (Efb −0.3 vs. RHE) leading to appropriate band bending, reduced overpotential requirement, higher oxygen vacancies (19.46 %) and uniform dispersion of metal atoms on NiTiO3 surfaces that are acting as trapping centers etc. are enabling improved hydrogen generation in the case of Pd−NiTiO3.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3