Silica Grafted Imprinted Mesoporous Polymer for the Development of SPE Coupled FAAS Method of Nickel Determination, Removal, and Spent Polymer for Reduction of Permanganate: Multivariate Optimization

Author:

Rais Saman1,Islam Aminul1ORCID

Affiliation:

1. Analytical Research Laboratory Department of Chemistry Aligarh Muslim University 202002 Aligarh India

Abstract

AbstractA novel silica fabricated allyloxy ethanol based imprinted polymer is synthesised with surface area of 333 m2 g−1 and average pore size of 6.5 nm by an environment friendly one pot surface imprinting process. It was employed for the selective solid‐phase extraction (SPE) of trace Ni(II) in real samples prior to FAAS determination. The factor settings produced via central composite design in response surface methodology (RSM) (pH: 3.6; initial concentration; 800 mg L−1 and time; 15 minute) provide adsorption capacity of 176 mg g−1. Artificial neural network model employed on the RSM data, provided better predictability. Sips isotherm model and BSf kinetic model describes best the sorption phenomena of the homogenous binding terrain. The developed SPE‐coupled FAAS method demonstrate a detection limit of 1.62 μg L−1, quantification limit of 4.17 μg L−1, and Linear dynamic range of 20–8000 μg L−1. It was successfully applied to determine nickel in food (Spinach, Radish, Green tea infusion, Black tea infusion, Coffee, Soya milk, Chocolate Soya milk, Tobacco) and wastewater samples (>99 % removal). For five replicate determinations, the method‘s relative standard deviation was 2.3 %. The method was validated by analysing two certified reference materials, and the outcomes were well‐congruent with standard values. For the synthesised polymer Ni(II) exhibits higher distribution ratio than other competing ions (Cu(II), Pb(II), Cd(II), and Zn(II)) with the imprinting factor; β values of 5.73, 4.98, 6.80, and 5.04 respectively. The reusability experiments revealed that APS@Ni‐IIP retains a strong adsorption efficacy even after 15 cycles and after its exhaustion it was employed as catalyst for reducing permanganate ions, further reducing pollution. The rigid structure of mesoporous silica contributes to its acid resilience and reusability, which can lead to a relative increase in polymer performance in absorption rate and selectivity. Apart from the novelty in the synthesis, thorough examination of the method and material selectivity (in binary, ternary and multielement system), multi fold applications of determination, removal of Ni(II) and reduction of permanganate ions, makes APS@Ni‐IIP a promising candidate for environmental remediation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3