Metal‐Free Catalytic Functionalization of Second −Csp2−H Bond of 1‐Methyl Pyrrole Using Bishomocubane‐Derived Aminoborane Frustrated Lewis Pairs: A Computational Study

Author:

Patel Tulsi R.12,Ganguly Bishwajit12ORCID

Affiliation:

1. Computation and Simulation Unit (Analytical & Environmental Science Division and Centralized Instrument Facility) CSIR-Central Salt & Marine Chemicals Research Institute Bhavnagar 364 002 Gujarat India.

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India

Abstract

AbstractBishomocubane, as a molecular scaffold, has been designed to functionalize the −Csp2−H bond of 1‐methyl pyrrole. The newly designed molecular scaffold showed noteworthy improvements in the reaction energetics than the phenylene scaffold. The DFT (ωB97XD/6‐31+G(d,p)) calculations revealed that the dimethyl amine (A) and piperidine (B) analogues of bishomocubane frustrated Lewis pairs (FLP) can catalyze the first −Csp2−H functionalization much more easily than that of the phenylene FLP. The previous results showed that the second −Csp2−H functionalization was found to be energetically difficult. The DFT calculations suggest that the piperidine analogue of bishomocubane, 1‐Pip‐2‐BH2‐C10H10 (B), can lead the second −Csp2−H functionalization facile than the reported FLPs. The rate‐determining step of the second −Csp2−H functionalization is significantly lower with the catalyst (B) by ∼9.0 kcal/mol compared to the phenylene catalyst (II). The improved reactivity of bishomocubane FLPs has been examined with molecular electrostatic potential (MESP) analysis and the conceptual density functional theory (CDFT) calculations. The hyperconjugative stabilization interaction (n→σ*) and the strain relief between the Lewis pairs play a crucial role in the stability of rate‐determining transition states. This study reveals that saturated hydrocarbon scaffolds are promising candidates as FLP catalysts in such reactions.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3