Machine Learning for the Prediction of Ionization Potential and Electron Affinity Energies Obtained by Density Functional Theory

Author:

Pereira Florbela1ORCID

Affiliation:

1. LAQV-REQUIMTE Department of Chemistry NOVA School of Science and Technology NOVA University of Lisbon 2829-516 Caparica Portugal

Abstract

AbstractQuantum chemical (QC) calculations based on density functional theory (DFT) provide increasingly accurate estimates of various properties, but with a relatively high computational cost. Machine learning (ML) techniques can be envisaged to extract new knowledge from these large volumes of data, creating empirical models to fast predict QC calculations in new situations. Here, ML algorithms were explored for the fast estimation of ionization potential (IP) and electron affinity (EA) energies calculated by DFT using the B3LYP and PBE0 with 6–31G** basic set on molecular descriptors generated from DFT‐optimized geometries. A database of 9,410 and 9,627 small organic structures for IP and EA energies modelling were used, respectively. Several ML algorithms such as random forest, support vector machines, deep learning multilayer perceptron networks, and light gradient‐boosting machine were screened. The best performance was achieved with a consensus regression model predicted an external test set of 972 and 963 small organic molecules achieving a mean absolute error up to 0.23 eV and 0.32 eV for modelling IP and EA energies, respectively.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3