Synthesis of Pyrimidine Modified Seleno‐DNA as a Novel Approach to Antisense Candidate

Author:

Fang Ziyuan1ORCID,Dantsu Yuliya2ORCID,Chen Cen3ORCID,Zhang Wen24ORCID,Huang Zhen56ORCID

Affiliation:

1. Department of Chemistry University of Chicago Chicago IL 60637

2. Department of Biochemistry and Molecular Biology Indiana University School of Medicine, Indianapolis Indianapolis IN 46202

3. Firebird Biomolecular Sciences LLC Alachua FL 32615

4. Melvin and Bren Simon Cancer Center 535 Barnhill Drive Indianapolis IN 46202

5. Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education College of Life Sciences Sichuan Univeristy Chengdu P. R. China 610064

6. Szostak-CDHT Large Nucleic Acids Institute and SeNA Research Institute Chengdu P. R. China 618000

Abstract

AbstractChemically modified antisense oligonucleotides (ASO) currently in pre‐clinical and clinical experiments mainly focus on the 2′‐position derivatizations to enhance stability and targeting affinity. Considering the possible incompatibility of 2′‐modifications with RNase H stimulation and activity, we have hypothesized that the atom specific modifications on nucleobases can retain the complex structure and RNase H activity, while enhancing ASO's binding affinity, specificity, and stability against nucleases. Herein we report a novel strategy to explore our hypothesis by synthesizing the deoxynucleoside phosphoramidite building block with the seleno‐modification at 5‐position of thymidine, as well as its Se‐oligonucleotides. Via X‐ray crystal structural study, we found that the Se‐modification was located in the major groove of nucleic acid duplex and didn't cause the thermal and structural perturbations. Surprisingly, our nucleobase‐modified Se‐DNAs were exceptionally resistant to nuclease digestion, while compatible with RNase H activity. This affords a novel avenue for potential anti‐sense modification in the form of Se‐antisense oligonucleotides (Se‐ASO).

Funder

Foundation for the National Institutes of Health

National Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3