Affiliation:
1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
2. Department of Design and Merchandising College of Health and Human Sciences Colorado State University Fort Collins Colorado 80523 USA
Abstract
AbstractPoly(vinyl alcohol) (PVA) was modified using D‐mannitol (DM) and 1‐butyl‐3‐methylimidazole bromide (BMIMBr) as the complex plasticizer (DB), and PVA/DB composite was prepared. The plasticizing effect of DB on PVA was studied by Fourier transform infrared spectroscopy (FT‐IR), differntial scanning calorimetry (DSC), thermos gravimetric analysis (TGA) and melt flow indexer (MI). FT‐IR analysis indicated that Br− of BMIMBr and OH of DM could form H‐bonds with OH of PVA. With the increase of DB, the melt temperature (Tm2) and crystallization temperature (Tc1) of PVA/DB composite decreased, the initial thermal decomposition temperatures (Td), thermal processing window (ΔT) and MI values increased respectively. Based on above studies, the influence of DB content on rheological properties of PVA/DB composite was investigated by the capillary rheometer. The result displayed that apparent viscosity of PVA/DB composite decreased with increasing DB content, shear rate and measured temperature. The non‐Newtonian index (n) increased and structural viscosity index (Δη) decreased with the increase of measured temperature and DB. The viscous flow activation energy (Eη) decreased as the shear rate and DB content increased. When the measured temperature, DB content and shear rate were in the range of Tm2+30 −Tm2+35 °C, 40–50 wt% and 764.8–1504.9 s−1, respectively, the spinnability of PVA/DB composite was optimal, which will lay a theoretical foundation for the exploration of melt spinning process in the future.
Funder
Fundamental Research Funds for the Central Universities