Heat transfer and hydromagnetic electroosmotic Von Kármán swirling flow from a rotating porous disc to a permeable medium with viscous heating and Joule dissipation

Author:

Balaji R.1,Prakash J.2,Tripathi Dharmendra3ORCID,Anwar Bég O.4

Affiliation:

1. Department of Mathematics Panimalar Engineering College Chennai Tamil Nadu India

2. Department of Mathematics Avvaiyar Government College for Women Karaikal Puducherry (U.T.) India

3. Department of Mathematics National Institute of Technology Uttarakhand Srinagar Uttarakhand India

4. Department of Mechanical and Aeronautical Engineering, SEE, Multi‐Physical Engineering Sciences Group Salford University Manchester UK

Abstract

AbstractMagnetohydrodynamic flow and heat transfer in an ionic viscous fluid in a porous medium induced by a stretching spinning disc and modulated by electroosmosis under an axial magnetic field and radial electrical field is presented in this study. The effects of convective wall boundary conditions, Joule heating and viscous dissipation are incorporated. The governing partial differential conservation equations are transformed into a system of self‐similar coupled, nonlinear ordinary differential equations with associated boundary conditions. The Matlab bvp4c solver featuring a shooting technique and the fourth‐order Runge–Kutta–Fehlberg method are used to numerically solve the governing dimensionless boundary value problem. Multivariate analysis is also performed to examine the thermal characteristics. An increase in rotation parameter induces a reduction in the radial velocity, whereas it elevates the tangential velocity. Greater electrical field parameter strongly damps the radial velocity whereas it slightly decreases the tangential velocity. Increasing magnetic parameter also damps both the radial and tangential velocities. An increment in electroosmotic parameter substantially decelerates the radial flow but has a weak effect on the tangential velocity field. Increasing permeability parameter (inversely proportional to permeability) markedly damps both radial and tangential velocities. The pressure gradient is initially enhanced near the disk surface but reduced further from the disk surface with increasing magnetic parameter and electrical field parameter, whereas the opposite effect is produced with increasing Joule dissipation. Increasing magnetic and rotational parameters generate a strong heating effect and boost temperature and thermal boundary layer thickness. Nusselt number is boosted with increasing Brinkman number (viscous heating effect) and Reynolds number. The simulations are relevant to electromagnetic coating flows, bioreactors and electrochemical sensing technologies in medicine.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3