Integrating spatial dependence into functional clustering of NDVI in the Ecuadorian Andes

Author:

Chuquin Jeysson1,Maigua Alexandra1,Flores Miguel12,Mateu Jorge3,Torres Sandra45,Zapata‐Ríos Xavier5

Affiliation:

1. Facultad de Ciencias Departamento de Matemática Escuela Politécnica Nacional Quito Ecuador

2. MODES, SIGTI. Grupo de Energías Alternativas y Ambiente GEAA Quito Ecuador

3. Departamento de Matemáticas Universidad Jaume I Castellón España

4. Facultad de Ciencias Agrícolas Universidad Central del Ecuador Quito Ecuador

5. Facultad de Ingenierí Civil y Ambiental Departamento de Ingenierí Civil y Ambiental Escuela Politécnica Nacional Quito Ecuador

Abstract

AbstractSpatial dependence into environmental data is an influential criterion in clustering processes, as the resulting clustering outputs depend very much upon such spatial structure. As classical methods do not take spatial dependence in consideration, the inclusion of this structure produces unexpected but more realistic results and clusters of curves that may not be similar in shape or behavior. In this paper, clustering is made using the KMSCFD algorithm for spatially correlated functional data. The methodology was developed through weighting the distance matrix between the curves with the trace‐variogram calculated with the coefficients of the basis functions resulting from a data smoothing operation. For the validation of the method, a number of simulated scenarios were tested together with an application to Normalized Difference Vegetation Index data derived from a high elevation ecosystem in the Ecuadorian Andes. Quality indices are implemented to obtain the appropriate number of clusters. The analysis showed five different regions that were latitudinally distributed.

Publisher

Wiley

Subject

Management Science and Operations Research,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A local correlation integral method for outlier detection in spatially correlated functional data;Stochastic Environmental Research and Risk Assessment;2023-12-21

2. The ENBIS‐21 quality and reliability engineering international special issue;Quality and Reliability Engineering International;2023-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3