Dependent state space Student‐t processes for imputation and data augmentation in plasma diagnostics

Author:

Rath Katharina12,Rügamer David23,Bischl Bernd24,von Toussaint Udo1,Albert Christopher G.5

Affiliation:

1. Department Numerical Methods of Plasma Physics Max‐Planck‐Institut für Plasmaphysik Garching Germany

2. Department of Statistics Ludwig‐Maximilians‐Universität München München Germany

3. Department of Statistics TU Dortmund University Dortmund Germany

4. Munich Center for Machine Learning (MCML) München Germany

5. Fusion@OEAW, Institute of Theoretical and Computational Physics Technische Universität Graz Graz Austria

Abstract

AbstractMultivariate time series measurements in plasma diagnostics present several challenges when training machine learning models: the availability of only a few labeled data increases the risk of overfitting, and missing data points or outliers due to sensor failures pose additional difficulties. To overcome these issues, we introduce a fast and robust regression model that enables imputation of missing points and data augmentation by massive sampling while exploiting the inherent correlation between input signals. The underlying Student‐t process allows for a noise distribution with heavy tails and thus produces robust results in the case of outliers. We consider the state space form of the Student‐t process, which reduces the computational complexity and makes the model suitable for high‐resolution time series. We evaluate the performance of the proposed method using two test cases, one of which was inspired by measurements of flux loop signals.

Funder

EUROfusion

Publisher

Wiley

Subject

Condensed Matter Physics

Reference21 articles.

1. Pattern Recognition and Machine Learning

2. P. Y.Simard D.Steinkraus J. C.Platt.Seventh International Conference on Document Analysis and Recognition 2003. Proceedings.2003 pp.958–963.

3. A survey on Image Data Augmentation for Deep Learning

4. Data augmentation for disruption prediction via robust surrogate models

5. C. K. I.Williams C. E.Rasmussen.Advances in Neural Information Processing Systems 8 MIT Press 1996 pp.514–520.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special issue: Machine learning methods in plasma physics;Contributions to Plasma Physics;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3