Classical and quantum theory of fluctuations for many‐particle systems out of equilibrium

Author:

Schroedter E.1,Bonitz M.1

Affiliation:

1. Institut für Theoretische Physik und Astrophysik Christian‐Albrechts‐Universität zu Kiel Kiel Germany

Abstract

AbstractCorrelated classical and quantum many‐particle systems out of equilibrium are of high interest in many fields, including dense plasmas, correlated solids, and ultracold atoms. Accurate theoretical description of these systems is challenging both, conceptionally and with respect to computational resources. While for classical systems, in principle, exact simulations are possible via molecular dynamics, this is not the case for quantum systems. Alternatively, one can use many‐particle approaches such as hydrodynamics, kinetic theory, or nonequilibrium Green functions (NEGF). However, NEGF exhibit a very unfavorable cubic scaling of the CPU time with the number of time steps. An alternative is the G1–G2 scheme [N. Schlünzen et al., Phys. Rev. Lett. 124, 076601 (2020)] which allows for NEGF simulations with time linear scaling, however, at the cost of large memory consumption. The reason is the need to store the two‐particle correlation function. This problem can be overcome for a number of approximations by reformulating the kinetic equations in terms of fluctuations – an approach that was developed, for classical systems, by Yu.L. Klimontovich [JETP 33, 982 (1957)]. Here, we present an overview of his ideas and extend them to quantum systems. In particular, we demonstrate that this quantum fluctuations approach can reproduce the nonequilibrium GW approximation [E. Schroedter et al., Cond. Matt. Phys. 25, 23401 (2022)] promising high accuracy at low computational cost which arises from an effective semiclassical stochastic sampling procedure. We also demonstrate how to extend the approach to the two‐time exchange‐correlation functions and the density response properties. [E. Schroedter et al., Phys. Rev. B 108, 205109 (2023)]. The results are equivalent to the Bethe–Salpeter equation for the two‐time exchange‐correlation function when the generalized Kadanoff‐Baym ansatz with Hartree‐Fock propagators is applied [E. Schroedter and M. Bonitz, phys. stat. sol. (b) 2024, 2300564].

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3