Molecular dynamics study of free volume coalescence around nonyl ethoxylate in polyethylene with vinyl acetate‐modified branches

Author:

Kavyani Sajjad1,Soares João B. P.1,Choi Phillip12ORCID

Affiliation:

1. Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada

2. Faculty of Engineering and Applied Science University of Regina Regina Saskatchewan Canada

Abstract

AbstractPolyethylene (PE) is susceptible to environmental stress cracking (ESC). In the presence of an amphiphilic compound and subjected to stress, ESC starts with cavitation followed by slow crack growth and ends with brittle fracture. In this study, we used molecular dynamics simulation to study how branch ends which were chemically modified with vinyl acetate groups affect free volume coalescence around an amphiphilic compound, nonyl ethoxylate (NE), dispersed in branched PE models. Branch ends modified with vinyl acetate significantly impact the free volume coalescence dynamics around NE. Compared with methyl branch ends, vinyl acetate branch ends show a much higher affinity, as quantified by the corresponding radial distribution functions, for the hydrophilic ethylene oxide‐segment of NE. However, this is not the case for the hydrophobic ethylene‐segment. Interestingly, vinyl acetate branch ends tend to reduce the power (amplitude) of the free volume size fluctuations around both the ethylene oxide‐ and ethylene‐segments. Indeed, the powers of the fluctuations with different PE branching characteristics decrease with increasing vinyl acetate concentration. We believe that free volume coalescence leads to cavitation and that vinyl acetate branches could inhibit cavitation, thereby crack propagation in PE. The power results seem to be consistent with the experimental observation that the addition of copolymer ethylene vinyl acetate to low‐density polyethylene improves the ESC resistance of the blend.Highlights Vinyl acetate branches reduce free volume coalescence activities. Vinyl acetate branches are attracted to the hydrophilic segment of NE. Cavitation likely starts from the free volume coalescence around NE.

Funder

Imperial Oil Limited

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3