Whole‐genome versus per‐chromosome targeted recombination: Simulations and predicted gains in maize with an integer programming model

Author:

Cameron John N.1,Bernardo Rex2ORCID

Affiliation:

1. Bayer Crop Science Chesterfield Missouri USA

2. Department of Agronomy and Plant Genetics University of Minnesota Saint Paul Minnesota USA

Abstract

AbstractPer‐chromosome targeted recombination, with one to two recombinations at specific marker intervals on each chromosome, doubles the predicted genetic gains in biparental populations. We developed an integer programing model to identify where a fixed number of targeted recombinations should occur across the whole genome, without restrictions on the number of targeted recombinations on each chromosome. We compared whole‐genome and per‐chromosome targeted recombination in 392 biparental maize (Zea mays L.) populations and in simulation experiments. For yield, moisture, test weight, and a simulated trait controlled by 2000 quantitative trait loci (QTL), predicted gains were 8%–9% larger with 10 targeted recombinations across the entire genome than with one targeted recombination on each of the 10 chromosomes. With whole‐genome targeted recombination, the number of recombinations on a given chromosome was correlated (r = 0.76–0.91) with the chromosome size (in cM). Simulation results suggested that previous results on gains from targeted recombination relative to nontargeted recombination were too optimistic by around 20%. Because the underlying QTL are unknown, studies on targeted recombination have relied on genomewide marker effects as proxies for QTL information. The simulation results indicated a 25% (for 10 recombinations) to 33% (for 20 recombinations) reduction in response due to the use of genomewide marker effects as proxies for QTL information. Overall, the results indicated that the integer programming model we developed is useful for increasing both the predicted and true gains from targeted recombination, but the predicted gains are likely to overestimate the true gains.

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3