Haplotyping interspecific hybrids by dual alignment to both parental genomes

Author:

Brown Pat J.1ORCID

Affiliation:

1. Department of Plant Sciences University of California Davis California USA

Abstract

AbstractSequencing‐based genotyping of heterozygous diploids requires sufficient depth to accurately call heterozygous genotypes. In interspecific hybrids, alignment of reads to both parental genomes simultaneously can generate haploid data, potentially eliminating the problem of heterozygosity. Two populations of interspecific hybrid rootstocks of walnut (Juglans) and pistachio (Pistacia) were genotyped using alignment to the maternal genome, paternal genome, and dual alignment to both genomes simultaneously. Downsampling was used to examine concordance of imputed genotype calls as a function of sequencing depth. Dual alignment resulted in datasets essentially free of heterozygous genotypes, simplifying the identification and removal of cross‐contaminated samples. Concordance between full and downsampled genotype calls was always highest after dual alignment. Nearly all single nucleotide polymorphisms (SNPs) in dual alignment datasets were shared with the corresponding single‐parent datasets, but 60%–90% of single‐parent SNPs were private to that dataset. Private SNPs in single‐parent datasets had higher rates of heterozygosity, lower levels of concordance, and were enriched in fixed differences between parental genomes (“homeo‐SNPs”) compared to shared SNPs in the same dataset. In multi‐parental walnut hybrids, the paternal‐aligned dataset was ineffective at resolving population structure in the maternal parent. Overall, the dual alignment strategy effectively produced phased, haploid data, increasing data quality and reducing cost.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3