Genomic and phenotypic characterization of finger millet indicates a complex diversification history

Author:

Bančič Jon12,Odeny Damaris A.3ORCID,Ojulong Henry F.3,Josiah Samuel M.4,Buntjer Jaap1,Gaynor R. Chris1ORCID,Hoad Stephen P.2,Gorjanc Gregor1,Dawson Ian K.2

Affiliation:

1. The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Research Centre Midlothian UK

2. Scotland's Rural College (SRUC) Kings Buildings Edinburgh UK

3. International Crops Research Institute for the Semi‐Arid Tropics ICRAF House Gigiri Nairobi Kenya

4. Department of Horticulture University of Georgia Athens Georgia USA

Abstract

AbstractAdvances in sequencing technologies mean that insights into crop diversification can now be explored in crops beyond major staples. We use a genome assembly of finger millet, an allotetraploid orphan crop, to analyze DArTseq single nucleotide polymorphisms (SNPs) at the whole and sub‐genome level. A set of 8778 SNPs and 13 agronomic traits was used to characterize a diverse panel of 423 landraces from Africa and Asia. Through principal component analysis (PCA) and discriminant analysis of principal components, four distinct groups of accessions were identified that coincided with the primary geographic regions of finger millet cultivation. Notably, East Africa, presumed to be the crop's origin, exhibited the lowest genetic diversity. The PCA of phenotypic data also revealed geographic differentiation, albeit with differing relationships among geographic areas than indicated with genomic data. Further exploration of the sub‐genomes A and B using neighbor‐joining trees revealed distinct features that provide supporting evidence for the complex evolutionary history of finger millet. Although genome‐wide association study found only a limited number of significant marker‐trait associations, a clustering approach based on the distribution of marker effects obtained from a ridge regression genomic model was employed to investigate trait complexity. This analysis uncovered two distinct clusters. Overall, the findings suggest that finger millet has undergone complex and context‐specific diversification, indicative of a lengthy domestication history. These analyses provide insights for the future development of finger millet.

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3