Meta‐QTL s and haplotypes for efficient zinc biofortification of rice

Author:

Joshi Gaurav12,Soe Yan Paing3,Palanog Alvin4,Hore Tapas Kumer1,Nha Chau Thanh5,Calayugan Mark Ian6,Inabangan‐Asilo Mary Ann1,Amparado Amery1,Pandey Indra Deo2,Cruz Pompe C. Sta6,Hernandez Jose E.6,Swamy B. P. Mallikarjuna1ORCID

Affiliation:

1. Rice Genetic Design and Validation Unit International Rice Research Institute Los Baños Philippines

2. Govind Ballabh Pant University of Agriculture and Technology Pantnagar Uttarakhand India

3. Department of Agriculture Nay Pyi Taw Myanmar

4. Can Tho University (CTU) Can Tho Vietnam

5. Philippines Rice Research Institute Muñoz Nueva Ecija Philippines

6. University of the Philippines Los Banos Laguna Philippines

Abstract

AbstractBiofortification of rice with improved grain zinc (Zn) content is the most sustainable and cost‐effective approach to address Zn malnutrition in Asia. Genomics‐assisted breeding using precise and consistent Zn quantitative trait loci (QTLs), genes, and haplotypes can fast‐track the development of Zn biofortified rice varieties. We conducted the meta‐analysis of 155 Zn QTLs reported from 26 different studies. Results revealed 57 meta‐QTLs with a significant reduction of 63.2% and 80% in the number and confidence interval of the Zn QTLs, respectively. Meta‐quantitative trait loci (MQTLs) regions were found to be enriched with diverse metal homeostasis genes; at least 11 MQTLs were colocated with 20 known major genes involved in the production of root exudates, metal uptake, transport, partitioning, and loading into grains in rice. These genes were differentially expressed in vegetative and reproductive tissues, and a complex web of interactions were observed among them. We identified superior haplotypes and their combinations for nine candidate genes (CGs), and the frequency and allelic effects of superior haplotypes varied in different subgroups. The precise MQTLs with high phenotypic variance, CGs, and superior haplotypes identified in our study are useful for an efficient Zn biofortification of rice and to ensure Zn as an essential component of all the future rice varieties through mainstreaming of Zn breeding.

Funder

Bill and Melinda Gates Foundation

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3