Genomic prediction for complex traits across multiples harvests in alfalfa (Medicago sativa L.) is enhanced by enviromics

Author:

Filho Claudio Carlos Fernandes1ORCID,Andrade Mario Henrique Murad Leite2ORCID,Nunes José Airton Rodrigues1ORCID,Jarquin Diego Hernandez2ORCID,Rios Esteban Fernando2ORCID

Affiliation:

1. Departamento de Biologia, Instituto de Ciências Naturais Universidade Federal de Lavras Lavras Minas Gerais Brazil

2. Agronomy Department University of Florida Gainesville FL USA

Abstract

AbstractBreeding for dry matter yield and persistence in alfalfa (Medicago sativa L.) can take several years as these traits must be evaluated under multiple harvests. Therefore, genotype‐by‐harvest interaction should be incorporated into genomic prediction models to explore genotypes’ adaptability and stability. In this study, we investigated how enviromics could help to predict the genotypic performance under multiharvest alfalfa breeding trials by evaluating 177 families across 11 harvests under four cross‐validation scenarios. All scenarios were analyzed using six models in a Bayesian mixed model framework. Our results demonstrate that models accounting to the enviromics information led to an increase of genetic variance and a decrease in the error variance, indicating better biological explanation when the enviromic information was incorporated. Furthermore, models that accounted for enviromic data led to higher predictive ability (PA) in a reduced number of harvests used in the training data set. The best enviromic models (M2 and M3) outperformed the base model (GBLUP model—M0) for predicting adaptability and persistence across all cross‐validation scenarios. Incorporating environmental covariates also provided higher PA for persistence compared with the base model, as predictions increased from 0 to 0.16, 0.20, 0.56, and 0.46 for CV00, CV1, CV0, and CV2. The results also demonstrate that GBLUP without enviromics term has low power to predict persistence, thus the adoption of enviromics is a cheap and efficient alternative to increase accuracy and biological meaning.

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Genetics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3