A prognostic model established using bile acid genes to predict the immunity and survival of patients with gastrointestinal cancer

Author:

Wu Xin1ORCID,Liu Peifa2,Wang Qing1,Sun Linde1,Wang Yu1

Affiliation:

1. Department of General Surgical Medicine The First Medicine Center of PLA General Hospital Beijing China

2. Pathology Department The First Medicine Center of PLA General Hospital Beijing China

Abstract

AbstractBackgroundThe metabolism of abnormal bile acids (BAs) is implicated in the initiation and development of gastrointestinal (GI) cancer. However, there was a lack of research on the molecular mechanisms of BAs metabolism in GI.MethodsGenes involved in BAs metabolism were excavated from public databases of The Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) database, and Molecular Signatures Database (MSigDB). ConsensusClusterPlus was used to classify molecular subtypes for GI. To develop a RiskScore model for predicting GI prognosis, univariate Cox analysis was performed on the genes in protein–protein interaction (PPI) network, followed by using Lasso regression and stepwise regression to refine the model and to determine the key prognostic genes. Tumor immune microenvironment in GI patients from different risk groups was assessed using the ESTIMATE algorithm and enrichment analysis. Reverse transcription–quantitative real‐time PCR (RT‐qPCR), Transwell assay, and wound healing assay were carried out to validate the expression and functions of the model genes.ResultsThis study defined three molecular subtypes (C1, C2, and C3). Specifically, C1 had the best prognosis, while C3 had the worst prognosis with high immune checkpoint gene expression levels and TIDE scores. We selected nine key genes (AXIN2, ATOH1, CHST13, PNMA2, GYG2, MAGEA3, SNCG, HEYL, and RASSF10) that significantly affected the prognosis of GI and used them to develop a RiskScore model accordingly. Combining the verification results from a nomogram, the prediction of the model was proven to be accurate. The high RiskScore group was significantly enriched in tumor and immune‐related pathways. Compared with normal gastric mucosal epithelial cells, the mRNA levels of the nine genes were differential in the gastric cancer cells. Inhibition of PNMA2 suppressed migration and invasion of the cancer cells.ConclusionWe distinguished three GI molecular subtypes with different prognosis based on the genes related to BAs metabolism and developed a RiskScore model, contributing to the diagnosis and treatment of patients with GI.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3