Comparing emulation methods for a high‐resolution storm surge model

Author:

Hutchings Grant12,Sansó Bruno1,Gattiker James2,Francom Devin2,Pasqualini Donatella2

Affiliation:

1. Department of Statistics University of California Santa Cruz Santa Cruz California USA

2. Statistical Sciences Group Los Alamos National Laboratory Los Alamos New Mexico USA

Abstract

AbstractRealistic simulations of complex systems are fundamental for climate and environmental studies. Large computer systems are often not sufficient to run sophisticated computational models for large numbers of different input settings. Statistical surrogate models, or emulators, are key tools enabling fast exploration of the simulator input space. Gaussian processes have become standard for computer simulator emulation. However, they require careful implementation to scale appropriately, motivating alternative methods more recently introduced. We present a comparison study of surrogates of the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) simulator—the simulator of choice for government agencies—using four emulation approaches: BASS; BART; SEPIA; and RobustGaSP. SEPIA and RobustGaSP use Gaussian processes, BASS implements adaptive splines, and BART is based on ensembles of regression trees. We describe the four models and compare them in terms of computation time and predictive metrics. These surrogates use proven and distinct methodologies, are available through accessible software, and quantify prediction uncertainty. Our data cover millions of response values. We find that SEPIA and RobustGaSP provide exceptional predictive power, but cannot scale to emulate experiments as large as the one considered in this paper as effectively as BASS and BART.

Funder

Los Alamos National Laboratory

University of California, Santa Cruz

National Science Foundation of Sri Lanka

Publisher

Wiley

Subject

Ecological Modeling,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3