Yield spread selection in predicting recession probabilities

Author:

Choi Jaehyuk1,Ge Desheng1,Kang Kyu Ho2,Sohn Sungbin3

Affiliation:

1. Peking University HSBC Business School Shenzhen China

2. Department of Economics Korea University Seoul Republic of Korea

3. School of Economics Sogang University Seoul Republic of Korea

Abstract

AbstractThe literature on using yield curves to forecast recessions customarily uses 10‐year–3‐month Treasury yield spread without verification on the pair selection. This study investigates whether the predictive ability of spread can be improved by letting a machine learning algorithm identify the best maturity pair and coefficients. Our comprehensive analysis shows that, despite the likelihood gain, the machine learning approach does not significantly improve prediction, owing to the estimation error. This is robust to the forecasting horizon, control variable, sample period, and oversampling of the recession observations. Our finding supports the use of the 10‐year–3‐month spread.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Strategy and Management,Computer Science Applications,Modeling and Simulation,Economics and Econometrics

Reference30 articles.

1. Bauer M. D. &Mertens T. M.(2018a).Economic Forecasts with the Yield Curve. (2018‐07): Federal Reserve Bank of San Franciscohttps://www.frbsf.org/economic-research/publications/economic-letter/2018/march/economic-forecasts-with-yield-curve/

2. Bauer M. D. &Mertens T. M.(2018b).Information in the Yield Curve about Future Recessions. (2018‐20): Federal Reserve Bank of San Francisco https://www.frbsf.org/economic‐research/publications/economic‐letter/2018/august/information‐in‐yield‐curve‐about‐future‐recessions/

3. Evaluating the Classification of Economic Activity into Recessions and Expansions

4. The use of the area under the ROC curve in the evaluation of machine learning algorithms

5. Optimal Versus Naive Diversification: How Inefficient is the 1/NPortfolio Strategy?

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ROC and PRC Approaches to Evaluate Recession Forecasts;Journal of Business Cycle Research;2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3