Adaptive geometric multigrid for the mixed finite cell formulation of Stokes and Navier–Stokes equations

Author:

Saberi S.1ORCID,Meschke G.2,Vogel A.1

Affiliation:

1. High Performance Computing Ruhr University Bochum Bochum Germany

2. Institute for Structural Mechanics Ruhr University Bochum Bochum Germany

Abstract

AbstractThe unfitted finite element methods have emerged as a popular alternative to classical finite element methods for the solution of partial differential equations and allow modeling arbitrary geometries without the need for a boundary‐conforming mesh. On the other hand, the efficient solution of the resultant system is a challenging task because of the numerical ill‐conditioning that typically entails from the formulation of such methods. We use an adaptive geometric multigrid solver for the solution of the mixed finite cell formulation of saddle‐point problems and investigate its convergence in the context of the Stokes and Navier–Stokes equations. We present two smoothers for the treatment of cutcells in the finite cell method and analyze their effectiveness for the model problems using a numerical benchmark. Results indicate that the presented multigrid method is capable of solving the model problems independently of the problem size and is robust with respect to the depth of the grid hierarchy.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3