Electrical energy input efficiency limitations in CO2‐to‐CO electrolysis and attempts for improvement

Author:

Reichbauer Thomas12ORCID,Schmid Bernhard1ORCID,Vetter Kim‐Marie1ORCID,Reinisch David1ORCID,Martić Nemanja1ORCID,Reller Christian1,Grasruck Alexander2,Dorta Romano2ORCID,Schmid Günter1ORCID

Affiliation:

1. SE TI SES PRM Siemens Energy Global GmbH & Co. KG Erlangen Germany

2. Department of Chemistry and Pharmacy Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany

Abstract

AbstractElectrochemical CO2 reduction is a potentially up‐coming technology to convert anthropogenic emitted CO2 into chemical feedstock. Due to alkaline operating conditions of CO2‐electrolyis in gas diffusion electrodes, exothermal hydroxide ion neutralization with the excess of supplied CO2 leads to unavoidable electricity‐to‐heat conversion at the cathode, therefore limiting electrical energy input efficiency. The decomposition reaction of carbonates by protons from water oxidation completes the inherent CO2 transport at the anode. In this work, different production routes to CO are thermodynamically examined and experimentally validated. Using formic acid as an intermediate towards CO the electrical energy input efficiency can rise to 71% on a thermodynamical basis. Additionally, the possibility of altering the mechanism of CO2 reduction under acidic conditions is investigated, which would lead to even larger electrical energy input efficiencies. The concept was investigated by pH series measurements (pH = 0–6) at 50 mA/cm2 where Pb derived from Pb3O4 was used as a CO2 reduction catalyst. The reduction to formic acid under acidic bulk electrolyte pH is stable at FEHCOOH = 70% down to pH ≈ 1, while HER is becoming dominant below. Even under such acidic bulk electrolyte conditions no change in reduction mechanism could be forced, which is reflected in invariant cell voltages in the model experiment.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3