Probing passivity of corroding metals using scanning electrochemical probe microscopy

Author:

Skaanvik Sebastian Amland1,Gateman Samantha Michelle23ORCID

Affiliation:

1. Interdisciplinary Nanoscience Center Aarhus University Aarhus Denmark

2. Department of Chemistry Western University London Ontario Canada

3. Surface Science Western Western University London Ontario Canada

Abstract

AbstractPassive films are essential for the longevity of metals and alloys in corrosive environments. A great deal of research has been devoted to understanding and characterizing passive films, including their chemical composition, uniformity, thickness, porosity, and conductivity. Many characterization techniques are conducted under vacuum, which do not portray the true in‐service environments passive films will endure. Scanning electrochemical probe microscopy (SEPM) techniques have emerged as necessary tools to complement research on characterizing passive films to enable the in situ extraction of passive film parameters and monitoring of local breakdown events of compromised films. Herein, we review the current research efforts using scanning electrochemical microscopy, scanning electrochemical cell microscopy (or droplet cell measurements), and local electrochemical impedance spectroscopy techniques to advance the knowledge of local properties of passivated metals. The future use of SEPM for quantitative extraction of local film characteristics within in‐service environments (i.e., with varying pH, solution composition, and applied potential) is promising, which can be correlated to nanostructural and microstructural features of the passive film and underlying metal using complementary microscopy and spectroscopy methods. The outlook on this topic is highlighted, including exciting avenues and challenges of these methods in characterizing advanced alloy systems and protective surface films.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3