Optimization of operational parameters using central composite design in the peroxi‐alternating current‐electrocoagulation process for the pollutant removal with determination of power consumption from industrial wastewater

Author:

Asaithambi Perumal1,Desta Wendesen Mekonin1,Hussen Mohammed1,Yesuf Mamuye Busier1,Beyene Dejene1

Affiliation:

1. Faculty of Civil and Environmental Engineering Jimma Institute of Technology Jimma University Jimma Ethiopia

Abstract

AbstractThe utilization of electrochemical and advanced oxidation technologies for industrial wastewater (IW) treatment has grown in popularity during the last two decades. The effectiveness of several methods for treating IW, including hydrogen peroxide (H2O2), direct‐current (DC) and alternating‐current (AC)‐electrocoagulation (EC), and the combination of H2O2 with DC/AC‐EC (H2O2‐DC/AC‐EC) processes were all investigated. In comparison to the H2O2, DC/AC‐EC, and H2O2‐DC/AC‐EC technologies, the results showed that the H2O2‐AC‐EC process produced 100% total colour and 100% chemical oxygen demand (COD) removal efficiency with a low power consumption of 4.4 kWhm−3. The H2O2/AC‐EC technology was optimized for treating IW using a response surface methodology approach based on a central composite design using a five‐factor level. Utilizing statistical and mathematical techniques, the optimum parameters were determined to minimize consumption of power (1.02 kWhm−3) and maximum COD elimination (75%). The experimental parameters comprised the following: H2O2 of 600 mg/L, current of 0.65 Amp, pH of 7.6, COD of 1600 mg/L, and treatment time (TT) of 1.26 h. When using a Fe/Fe electrode combination with the wastewater pH of 7, the COD removal efficiency was shown to be enhanced by increasing the TT, current and H2O2, and decreasing the COD concentration. The synergistic impact, quantified as the combined efficiency of eliminating % COD utilizing the H2O2, AC‐EC, and H2O2/AC‐EC procedures, was found to be 15.75%. Therefore, employing a hybrid H2O2‐AC‐EC approach is considerably more effective in treating IW.

Funder

Jimma University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3