Breast cancer diagnosis through an optimization‐driven multispectral gamma correction (ODMGC)

Author:

A Arul Edwin Raj1ORCID,Ahmad Nabihah Binti1,S Ananiah Durai2

Affiliation:

1. Faculty of Electrical and Electronic Universiti Tun Hussein Onn Parit Raja Malaysia

2. ECE Department VIT Chennai India

Abstract

SummaryThe Optimization‐Driven Multispectral Gamma Correction (ODMGC) algorithm overcomes challenges in gathering subtle information and detecting cancer in dense breast thermograms. This algorithm enhances the accuracy of true positives and true negatives while minimising false negatives and false positives. The ODMGC involves a multi‐step optimisation process that categorises grey‐scale images of breast thermograms based on mean brightness. Then, based on the grey levels of the pixels, we grouped each categorisation into sub‐regions. Followed by each group has undergone individually optimised base enhancement. This process enhances the contrast between cancerous and normal tissues, eliminates over‐ and under‐enhancement, and supports breast tumour diagnosis. The optimised‐based enhancement images serve as a reference point for the histogram specification of the V component of the thermograms in the HSV (Hue, Saturation, and Value) model. Further, we evaluated the proposed model using both qualitative and quantitative measures. Finally, using dimension‐reduced significant Grey‐Level Co‐occurrence Matrix (GLCM) features, we validated the results with a Random Forest (RF) classifier. The algorithm was successfully implemented in MATLAB 2020a, and the classifier was developed in Jupyter Notebook using Python. The subjective comparison confirmed the proposed method's superior resolution in normal and malignant cases. The classifier results showed an accuracy of 96.4%, sensitivity of 98.1%, and specificity of 96.9%.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3