A Novel Surrogated Approach for Optimizing a Vertical Axis Wind Turbine With Straight Blades

Author:

Sanaye Sepehr1ORCID,Rezaeian Parsa1,Farvizi Armin1

Affiliation:

1. Energy Systems Improvement Laboratory (ESIL), School of Mechanical Engineering Iran University of Science & Technology (IUST) Tehran Iran

Abstract

ABSTRACTVertical axis wind turbine (VAWT) has a rotating axis perpendicular to the wind direction. This type of wind turbine that is suitable for urban environments has low wind direction dependency and noise. In this research, a novel surrogated approach for optimizing a VAWT is proposed, used, tested, and verified, which is not reported in literature. The proposed method consisted of 3D computational fluid dynamics (CFD) analysis of wind flow through the wind turbine with FLUENT software by solving the unsteady turbulent equations. However, 3D CFD analysis was time and cost consuming to obtain the output result (power coefficient) from input values (airfoil chord length, pitch angle, and tip speed ratio as turbine design variables). Thus, artificial neural network (ANN) was applied to obtain weight functions to correlate FLUENT software inputs and outputs after learning process. Finally, genetic algorithm was used for maximizing the turbine power coefficient considering three defined design variables. The optimum value of power coefficient was improved to 0.244, and the optimum values of design variables for blade chord length, blade pitch angle, and blade tip speed ratio were 0.218, −0.453, and 1.24, respectively. This novel surrogated method reduced the computational time and cost of VAWT optimizing considerably.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3