Impact of hypoxia conditions on the Mnemiopsis leidyi A. Agassiz, 1865 bioluminescence

Author:

Mashukova Olga1ORCID,Silakov Mikhail1ORCID,Kolesnikova Evgenia1ORCID,Temnykh Alexandra1ORCID

Affiliation:

1. Animal Physiology and Biochemistry Department of IBSS A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS (IBSS) Sevastopol Russia

Abstract

AbstractThe findings of the study on the impact of hypoxia on the glow of the Black Sea ctenophore Mnemiopsis leidyi A. Agassiz, 1865 of three size groups (20–30, 30–45, and 45–60 mm) were obtained under experimental conditions. Peculiarities of ctenophore bioluminescence were studied during mechanical and chemical stimulation under the conditions of normoxia (at an oxygen concentration of 5.6–6.7 mg O2 L−1), moderate hypoxia (2.5–2.8 mg O2 L−1), and acute hypoxia (1.2–1.5 mg O2 L−1). An increase in the amplitude and energy of luminescence of the ctenophores mechanically and chemically stimulated was observed at an oxygen concentration of 1.2–1.5 mg O2 L−1 (acute hypoxia) in two size groups in the lobate form (30–45 and 45–60 mm). The inhibition of amplitude, energy, and duration of the signal was registered in M. leidyi ctenophores at the transitional stage from larva to the lobate form under conditions of acute hypoxia. It was noted that in normoxia, the values of the amplitude and energy of the bioluminescent signal of M. leidyi increase along with a size growth of an individual. This phenomenon was observed both during mechanical and chemical stimulations. Under conditions of acute hypoxia, this trend was mainly preserved.The universality of the relation between the bioluminescence of the organisms and their bioenergetics is obvious. The bioluminescent system of ctenophores has the role of an antioxidant system and is engaged in the neutralization of reactive oxygen species (ROS), that is the process during which photons are emitted. The response of the bioluminescent system to a decrease in oxygen concentration can be associated with an increase in the production of ROS that provides high values of the ctenophore luminescence under hypoxic conditions.

Publisher

Wiley

Subject

Chemistry (miscellaneous),Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3