Residual mechanical resistance of concrete blocks and laying mortars after high temperatures

Author:

Amaral Rafaela de Oliveira1,Moreno Armando Lopes1,Medeiros Wallison Angelim2ORCID,Parsekian Guilherme Aris2

Affiliation:

1. Department of Civil Engineering University of Campinas Campinas Brazil

2. Department of Civil Engineering Federal University of São Carlos Sao Carlos Brazil

Abstract

AbstractThis paper reports an experimental campaign to evaluate the residual mechanical resistance after high temperatures of two structural masonry components: block and mortar. Residual compressive strength and deformation modulus of four different hollow concrete blocks and two different mortar mixes after heating at high temperatures are investigated. The test method used was the one recommended by RILEM TC 200 for mortars and an adaptation of the same method proposed by Medeiros et al. suitable for the geometry of hollow blocks. Despite the sharp drop in the deformation modulus after heating blocks and mortar, no different behaviours are observed in the deformability of the materials caused by the variables studied. The same cannot be said in relation to the variation of the residual compressive strength of the blocks, which is affected by the variables: initial nominal compressive strength and width of the concrete block. Regarding laying mortars, the results confirmed the small influence of compressive strength on the evolution of residual mechanical strength. The data and analyses reported here on the residual mechanical properties of hollow concrete blocks produced from a concrete mixture of very dry consistency, vibro‐pressed and with normal weight aggregates are relevant, since the data found in the literature generally refer to the wet cast concrete material and in cylindrical bodies.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Metals and Alloys,Polymers and Plastics,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Reference22 articles.

1. Residual mechanical properties of hollow concrete blocks with different aggregate types after exposure to high temperatures

2. Mechanical properties and structural behaviour of masonry at elevated temperatures;Ayala FRR;Univ Manchester, Fac Eng Phys Sci,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3