The moist halo region around shallow cumulus clouds in large eddy simulations

Author:

Gu Jian‐Feng12ORCID,Plant Robert Stephen2ORCID,Holloway Christopher E.2ORCID,Clark Peter A.2ORCID

Affiliation:

1. Key Laboratory of Mesoscale Severe Weather/Ministry of Education, School of Atmospheric Sciences Nanjing University Nanjing China

2. Department of Meteorology University of Reading Reading UK

Abstract

AbstractIn this study, the moist buffering halo region of shallow maritime cumulus clouds is systematically investigated using large eddy simulations with various grid resolutions and numerical choices. Autocorrelation analyses of cloud liquid water and relative humidity suggest a converged size of 200–300 m for moist patches outside clouds when the model resolution is below 50 m, but may overestimate this size due to noncloudy moist regions. Based on a composite analysis, the structure of the moist halo immediately outside individual clouds is examined. It is found that, regardless of model resolution, the distribution of relative humidity in the halo region does not depend on cloud size, but on the real distance away from the cloud boundary, indicating some size‐independent length scales are responsible for the halo formation. The relative humidity decays with distance more quickly with finer horizontal resolution, which is possibly related to the model resolution dependence of the cloud spectrum. The halo size near the cloud base is larger than that within the cloud layer and this feature is robust across all simulations. Further analyses of backward and forward Lagrangian trajectories originating from the moist halo region reveal the possible role for subcloud coherent structures in cloud‐base halo formation. Possible mechanisms explaining cloud halo sizes and associated length scales are discussed.

Funder

Natural Environment Research Council

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3