Novel progressive deep learning algorithm for uncovering multiple single nucleotide polymorphism interactions to predict paclitaxel clearance in patients with nonsmall cell lung cancer

Author:

Chen Wei12ORCID,Zhou Haiyan2,Zhang Mingyu2,Shi Yafei2,Li Taifeng2,Qian Di2,Yang Jun2,Yu Feng1,Li Guohui2

Affiliation:

1. School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing China

2. Pharmacy Department, National Cancer Center/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

Abstract

AbstractBackgroundThe rate at which the anticancer drug paclitaxel is cleared from the body markedly impacts its dosage and chemotherapy effectiveness. Importantly, paclitaxel clearance varies among individuals, primarily because of genetic polymorphisms. This metabolic variability arises from a nonlinear process that is influenced by multiple single nucleotide polymorphisms (SNPs). Conventional bioinformatics methods struggle to accurately analyze this complex process and, currently, there is no established efficient algorithm for investigating SNP interactions.MethodsWe developed a novel machine‐learning approach called GEP‐CSIs data mining algorithm. This algorithm, an advanced version of GEP, uses linear algebra computations to handle discrete variables. The GEP‐CSI algorithm calculates a fitness function score based on paclitaxel clearance data and genetic polymorphisms in patients with nonsmall cell lung cancer. The data were divided into a primary set and a validation set for the analysis.ResultsWe identified and validated 1184 three‐SNP combinations that had the highest fitness function values. Notably, SERPINA1, ATF3 and EGF were found to indirectly influence paclitaxel clearance by coordinating the activity of genes previously reported to be significant in paclitaxel clearance. Particularly intriguing was the discovery of a combination of three SNPs in genes FLT1, EGF and MUC16. These SNPs‐related proteins were confirmed to interact with each other in the protein–protein interaction network, which formed the basis for further exploration of their functional roles and mechanisms.ConclusionWe successfully developed an effective deep‐learning algorithm tailored for the nuanced mining of SNP interactions, leveraging data on paclitaxel clearance and individual genetic polymorphisms.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3