Binary molten salt in situ synthesis of sandwich‐structure hybrids of hollow β‐Mo2C nanotubes and N‐doped carbon nanosheets for hydrogen evolution reaction

Author:

Gong Tianyu1,Liu Yang1,Cui Kai1,Xu Jiali1,Hou Linrui1,Xu Haowen1,Liu Ruochen1,Deng Jianlin2,Yuan Changzhou1ORCID

Affiliation:

1. School of Materials Science & Engineering University of Jinan Jinan People's Republic of China

2. School of Chemical Engineering Shandong Institute of Petroleum and Chemical Technology Dongying People's Republic of China

Abstract

AbstractFocused exploration of earth‐abundant and cost‐efficient non‐noble metal electrocatalysts with superior hydrogen evolution reaction (HER) performance is very important for large‐scale and efficient electrolysis of water. Herein, a sandwich composite structure (designed as MS‐Mo2C@NCNS) of β‐Mo2C hollow nanotubes (HNT) and N‐doped carbon nanosheets (NCNS) is designed and prepared using a binary NaCl–KCl molten salt (MS) strategy for HER. The temperature‐dominant Kirkendall formation mechanism is tentatively proposed for such a three‐dimensional hierarchical framework. Due to its attractive structure and componential synergism, MS‐Mo2C@NCNS exposes more effective active sites, confers robust structural stability, and shows significant electrocatalytic activity/stability in HER, with a current density of 10 mA cm−2 and an overpotential of only 98 mV in 1 M KOH. Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS, leading to enhanced electronic transport and suitable adsorption free energies of H* (ΔGH*) on the surface of electroactive Mo2C. More significantly, the MS‐assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non‐noble metal electrocatalysts toward efficient hydrogen evolution.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3