Migrating ripples create streambed heterogeneity altering microbial diversity and metabolic activity

Author:

Oprei Anna12ORCID,Schreckinger José23ORCID,Kamjunke Norbert4ORCID,Worrich Anja5ORCID,Mutz Michael2,Risse‐Buhl Ute346ORCID

Affiliation:

1. Department of Ecohydrology and Biogeochemistry Leibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany

2. Department of Aquatic Ecology Brandenburg University of Technology Bad Saarow Germany

3. Institute for Environmental Sciences, RPTU Kaiserslautern‐Landau Landau Germany

4. Department River Ecology Helmholtz Centre for Environmental Research—UFZ Magdeburg Germany

5. Department Environmental Microbiology Helmholtz Centre for Environmental Research—UFZ Leipzig Germany

6. Ecology Department, Faculty of Biology RPTU Kaiserslautern‐Landau Kaiserslautern Germany

Abstract

AbstractSandy sediments of lowland streams are typically transported at low flow in the form of migrating ripples. In these bedforms, microbial communities spanning all trophic guilds (heterotrophic bacteria, fungi, photoautotrophic and phagotrophic protists) are exposed to highly frequent moving–resting cycles of sediment grains. Up to date, it is unknown to what extent ripple migration impacts community metabolism and composition as well as the vertical zonation of sediment‐associated multitrophic microbial communities compared to stationary sediments. We hypothesize that, as a result of mechanical abrasion and limited light supply, migrating ripple sediments have lower microbial abundance, diversity, metabolism and resource acquisition and no vertical zonation compared to stationary sediments. We collected samples from five lowland streams in north‐eastern Germany between May and June 2020. The coarser and better sorted sediments of migrating ripples had a higher oxygen concentration and less organic matter than stationary sediments. Photosynthetic pigments, potential extracellular enzyme activities, bacterial cell counts, and fungal gene copies were lower in migrating ripples than in stationary sediments. In contrast, cell‐specific bacterial production was higher in migrating ripples. Metabarcoding revealed that bedform migration was important in shaping the community structure of bacteria, fungi, and phagotrophic protists. Dry mass‐related net community production, respiration, and bacterial production were higher in superficial compared to underlying layers irrespective of sediment transport. By modulating the abundance, diversity, and structure of different trophic guilds of microbial communities and their resource acquisition, migrating bedforms create streambed heterogeneity, shaping regional biodiversity and the flow of matter through the benthic food web.

Funder

Deutsche Forschungsgemeinschaft

Carl-Zeiss-Stiftung

Publisher

Wiley

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3