Affiliation:
1. Hebei Technology Innovation Center of Textile and Garment School of Textile and Garment Hebei University of Science and Technology Shijiazhuang PR China
2. Hebei Provincial Key Laboratory of Functional Protective Materials for Occupational Equipment Hebei University of Science and Technology Shijiazhuang PR China
Abstract
AbstractThis work reveals the synergistic effect of argon/nitrogen double plasma alteration on the mechanical properties of para‐aramid fiber/epoxy resin composites with various laminating sequences. Acoustic emission monitored interface failure during tensile, bending and fracture testing. A comparative analysis was conducted on the bending performance of the composites modified by argon/nitrogen double plasma and single plasma. The results showed that the synergistic effect of nitrogen and high‐energy molecule argon optimized the modifying effect of argon/nitrogen double plasma. The optimal modification parameters obtained through fiber extraction testing analysis are power 200 W, time 120 s, and Ar/N2 double gas flow rate of 12 sccm. After plasma treatment, twill weave modifies better than plain weave. The AE signal amplitude of PX1 is minimized during stretching. Due to the difference in internal bending stiffness of PX2, interface delamination failure is more likely to occur. The PX5 had greater fiber and matrix debonding failure between mode‐II fracture tests due to the weak modification effect of plain weave and its difficulty in deformation. In ballistic testing, PX1 blocks impact force through fiber bundle stretching deformation, while PX4 is more brittle.Highlights
Prepare para‐aramid/epoxy resin composites with various laminating sequences.
Study on the interfacial properties of composites treated with double plasma.
The composites with different gas sources treatment were analyzed.
Acoustic emission analysis was used to identify interface failure modes.
The bonding strength between plain and plain interfaces is the lowest.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献