Dual‐strategy modification on P2‐Na0.67Ni0.33Mn0.67O2 realizes stable high‐voltage cathode and high energy density full cell for sodium‐ion batteries

Author:

Wan Guanglin1,Peng Bo1,Zhao Liping1,Wang Feng1,Yu Lai1,Liu Rong2,Zhang Genqiang1ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering University of Science and Technology of China Hefei Anhui P. R. China

2. Department of Chemistry University of Science and Technology of China Hefei Anhui P. R. China

Abstract

AbstractP2‐type Na0.67Ni0.33Mn0.67O2 is considered as a potential cathode material for sodium‐ion batteries due to the merits of high voltage, low cost, and air stability. However, the unsatisfied cycling stability and rate performance caused by the destructive phase transition and side reactions hinder its practical application. Herein, we present a feasible dual strategy of Mg2+ doping integrated with ZrO2 surface modification for P2‐Na0.67Ni0.33Mn0.67O2, which can well address the issues of phase transition and side reactions benefitting from the enhanced structural and interfacial stabilities. Specifically, it exhibits a decent cycling stability with a capacity retention of 81.5% at 1 C and promising rate performance with a discharge capacity of 76.6 mA h g−1 at 5 C. The in situ X‐ray diffraction measurement confirms that the damaged P2–O2 phase transition is suppressed with better reversibility in high‐voltage region, whereas the side reactions are inhibited due to the protective ZrO2 surface modification. Commendably, the full cell achieves an outstanding operating voltage of 3.57 V and a fabulous energy density of 238.91 W h kg−1 at 36.73 W kg−1, demonstrating great practicability. This work is expected to provide a new insight for designing stable high‐voltage cathode materials and high energy density full cells for sodium ion batteries.

Funder

National Natural Science Foundation of China

Recruitment Program of Global Experts

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3