Alignment between water inputs and vegetation green‐up reduces next year's runoff efficiency

Author:

Newcomb Sarah K.1ORCID,Van Kirk Robert W.2,Godsey Sarah E.1ORCID,Kraft Maggi1ORCID

Affiliation:

1. Department of Geosciences Idaho State University Pocatello Idaho USA

2. Henry's Fork Foundation Ashton Idaho USA

Abstract

AbstractIn the western United States, water supplies largely originate as snowmelt from forested land. Forests impact the water balance of these headwater streams, yet most predictive runoff models do not explicitly account for changing snow‐vegetation dynamics. Here, we present a case study showing how warmer temperatures and changing forests in the Henrys Fork of the Snake River, a seasonally snow‐covered headwater basin in the Greater Yellowstone Ecosystem, have altered the relationship between April 1st snow water equivalent (SWE) and summer streamflow. Since the onset and recovery of severe drought in the early 2000s, predictive models based on pre‐drought relationships over‐predict summer runoff in all three headwater tributaries of the Henrys Fork, despite minimal changes in precipitation or snow accumulation. Compared with the pre‐drought period, late springs and summers (May–September) are warmer and vegetation is greener with denser forests due to recovery from multiple historical disturbances. Shifts in the alignment of snowmelt and energy availability due to warmer temperatures may reduce runoff efficiency by changing the amount of precipitation that goes to evapotranspiration versus runoff and recharge. To quantify the alignment between snowmelt and energy on a timeframe needed for predictive models, we propose a new metric, the Vegetation‐Water Alignment Index (VWA), to characterize the synchrony of vegetation greenness and snowmelt and rain inputs. New predictive models show that in addition to April 1st SWE, the previous year's VWA and summer reference evapotranspiration are the most significant predictors of runoff in each watershed and provide more predictive power than traditionally used metrics. These results suggest that the timing of snowmelt relative to the start of the growing season affects not only annual partitioning of streamflow, but can also determine the groundwater storage state that dictates runoff efficiency the following spring.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3