Affiliation:
1. Department of Geosciences Idaho State University Pocatello Idaho USA
2. Henry's Fork Foundation Ashton Idaho USA
Abstract
AbstractIn the western United States, water supplies largely originate as snowmelt from forested land. Forests impact the water balance of these headwater streams, yet most predictive runoff models do not explicitly account for changing snow‐vegetation dynamics. Here, we present a case study showing how warmer temperatures and changing forests in the Henrys Fork of the Snake River, a seasonally snow‐covered headwater basin in the Greater Yellowstone Ecosystem, have altered the relationship between April 1st snow water equivalent (SWE) and summer streamflow. Since the onset and recovery of severe drought in the early 2000s, predictive models based on pre‐drought relationships over‐predict summer runoff in all three headwater tributaries of the Henrys Fork, despite minimal changes in precipitation or snow accumulation. Compared with the pre‐drought period, late springs and summers (May–September) are warmer and vegetation is greener with denser forests due to recovery from multiple historical disturbances. Shifts in the alignment of snowmelt and energy availability due to warmer temperatures may reduce runoff efficiency by changing the amount of precipitation that goes to evapotranspiration versus runoff and recharge. To quantify the alignment between snowmelt and energy on a timeframe needed for predictive models, we propose a new metric, the Vegetation‐Water Alignment Index (VWA), to characterize the synchrony of vegetation greenness and snowmelt and rain inputs. New predictive models show that in addition to April 1st SWE, the previous year's VWA and summer reference evapotranspiration are the most significant predictors of runoff in each watershed and provide more predictive power than traditionally used metrics. These results suggest that the timing of snowmelt relative to the start of the growing season affects not only annual partitioning of streamflow, but can also determine the groundwater storage state that dictates runoff efficiency the following spring.
Funder
National Science Foundation