Density functional theory study of B‐ and Si‐doped carbons and their adsorption interactions with sulfur compounds

Author:

Guo Peng1,Zhang Hong2,Dong Shuliang1,An Libao1ORCID

Affiliation:

1. College of Mechanical Engineering North China University of Science and Technology Tangshan Hebei China

2. College of Life Sciences North China University of Science and Technology Tangshan Hebei China

Abstract

AbstractUnderstanding the adsorption interactions between carbon materials and sulfur compounds has far‐reaching impacts, in addition to their well‐known important role in energy storage and conversion, such as lithium‐ion batteries. In this paper, properties of intrinsic B or Si single‐atom doped, and B–Si codoped graphene (GR) and graphdiyne (GDY) were investigated by using density functional theory‐based calculations, in which the optimal doping configurations were explored for potential applications in adsorbing sulfur compounds. Results showed that both B or Si single‐atom doping and B–Si codoping could substantially enhance the electron transport properties of GR and GDY, improving their surface activity. Notably, B and Si atoms displayed synergistic effects for the codoped configurations, where B–Si codoped GR/GDY exhibited much better performance in the adsorption of sulfur‐containing chemicals than single‐atom doped systems. In addition, results demonstrated that, after B–Si codoping, the adsorption energy and charge transfer amounts of GDY with sulfur compounds were much larger than those of GR, indicating that B–Si codoped GDY might be a favorable material for more effectively interacting with sulfur reagents.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3