Score‐based test in high‐dimensional quantile regression for longitudinal data with application to a glomerular filtration rate data

Author:

Wang Yinfeng1,Wang Huixia Judy2ORCID,Tang Yanlin3ORCID

Affiliation:

1. Interdisciplinary Research Institute of Data Science, School of Statistics and Mathematics Shanghai Lixin University of Accounting and Finance Shanghai China

2. Department of Statistics George Washington University Washington District of Columbia USA

3. KLATASDS‐MOE, School of Statistics East China Normal University Shanghai China

Abstract

Motivated by a genome‐wide association study on the glomerular filtration rate, we develop a new robust test for longitudinal data to detect the effects of biomarkers in high‐dimensional quantile regression, in the presence of prespecified control variables. The test is based on the sum of score‐type statistics deduced from conditional quantile regression. The test statistic is constructed in a working‐independent manner, but the calibration reflects the intrinsic within‐subject correlation. Therefore, the test takes advantage of the feature of longitudinal data and provides more information than those based on only one measurement for each subject. Asymptotic properties of the proposed test statistic are established under both the null and local alternative hypotheses. Simulation studies show that the proposed test can control the family‐wise error rate well, while providing competitive power. The proposed method is applied to the motivating glomerular filtration rate data to test the overall significance of a large number of candidate single‐nucleotide polymorphisms that are possibly associated with the Type 1 diabetes, conditioning on the patients' demographics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Fundamental Research Funds for the Central Universities

National Science Foundation

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3