On the use of consistent bias corrections to enhance the impact of AeolusLevel‐2B Rayleigh winds on National Oceanic and Atmospheric Administration global forecast skill

Author:

Liu Hui12ORCID,Garrett Kevin3ORCID,Ide Kayo4ORCID,Hoffman Ross N.12ORCID

Affiliation:

1. NOAA/NESDIS/Center for Satellite Applications and Research (STAR) College Park Maryland USA

2. Cooperative Institute for Satellite Earth System Studies (CISESS) University of Maryland College Park Maryland USA

3. NOAA/NWS/Office of Science and Technology Integration (OSTI) Silver Spring Maryland USA

4. University of Maryland College Park Maryland USA

Abstract

AbstractThe operational Aeolus Level‐2B (L2B) horizontal line‐of‐sight (HLOS) retrieved Rayleigh winds, produced by the European Space Agency (ESA), utilize European Centre for Medium‐Range Weather Forecasts (ECMWF) short‐term forecasts of temperature, pressure, and horizontal winds in the Rayleigh–Brillouin and M1 correction procedures. These model fields or backgrounds can contain ECMWF model‐specific errors, which may propagate to the retrieved Rayleigh winds. This study examines the sensitivity of the retrieved Rayleigh winds to the changes in the model backgrounds, and the potential benefit of using the same system, in this case the National Oceanic and Atmospheric Administration's Finite‐Volume Cubed Sphere Global Forecast System (FV3GFS), for both the corrections and the data assimilation and forecast procedures. It is shown that the differences in the model backgrounds (FV3GFS minus ECMWF) can propagate through the Level‐2B horizontal line‐of‐sight Rayleigh wind retrieval process, mainly the M1 correction, resulting in differences in the retrieved Rayleigh winds with mean and standard deviation of magnitude as large as 0.2 m·s−1. The differences reach up to 0.4, 0.6, and 0.7 m·s−1 for the 95th, 99th, and 99.5th percentiles of the sample distribution with maxima of ∼1.4 m·s−1. The numbers of the large differences for the combined lower and upper 5th, 1st, and 0.5th percentile pairs are ∼6,100, 1,220, and 610 between 2.5 and 25 km height globally per day respectively. The ESA‐disseminated Rayleigh wind product (based on the ECMWF corrections) already shows a significant positive impact on the FV3GFS global forecasts. In the observing system experiments performed, compared with the ESA Rayleigh winds, the use of the FV3GFS‐corrected Rayleigh winds lead to ∼0.5% more Rayleigh winds assimilated in the lower troposphere and show enhanced positive impact on FV3GFS forecasts at the day 1–10 range but limited to the Southern Hemisphere.

Funder

National Oceanic and Atmospheric Administration

NSF

Publisher

Wiley

Subject

Atmospheric Science

Reference20 articles.

1. Cress A.(2020)‘Validation and impact assessment of Aeolus observations in the DWD modeling system. Status report’.Aeolus NWP Impacts Working Meeting Virtual. Available from:https://www.aeolus3years.org/detailed‐agenda[Accessed 15 November 2020]

2. Optimization and impact assessment of Aeolus HLOS wind assimilation in NOAA 's global forecast system

3. Best Linear Unbiased Estimation and Prediction under a Selection Model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3