Inconsistency identification in network meta‐analysis via stochastic search variable selection

Author:

Seitidis Georgios1ORCID,Nikolakopoulos Stavros23,Ntzoufras Ioannis4,Mavridis Dimitris1ORCID

Affiliation:

1. Department of Primary Education University of Ioannina Ioannina Greece

2. Department of Psychology University of Ioannina Ioannina Greece

3. Department of Biostatistics, Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht The Netherlands

4. Department of Statistics Athens University of Economics and Business Athens Greece

Abstract

The reliability of the results of network meta‐analysis (NMA) lies in the plausibility of the key assumption of transitivity. This assumption implies that the effect modifiers' distribution is similar across treatment comparisons. Transitivity is statistically manifested through the consistency assumption which suggests that direct and indirect evidence are in agreement. Several methods have been suggested to evaluate consistency. A popular approach suggests adding inconsistency factors to the NMA model. We follow a different direction by describing each inconsistency factor with a candidate covariate whose choice relies on variable selection techniques. Our proposed method, stochastic search inconsistency factor selection (SSIFS), evaluates the consistency assumption both locally and globally, by applying the stochastic search variable selection method to determine whether the inconsistency factors should be included in the model. The posterior inclusion probability of each inconsistency factor quantifies how likely is a specific comparison to be inconsistent. We use posterior model odds or the median probability model to decide on the importance of inconsistency factors. Differences between direct and indirect evidence can be incorporated into the inconsistency detection process. A key point of our proposed approach is the construction of a reasonable “informative” prior concerning network consistency. The prior is based on the elicitation of information derived historical data from 201 published network meta‐analyses. The performance of our proposed method is evaluated in two published network meta‐analyses. The proposed methodology is publicly available in an R package calledssifs, published on CRAN and developed and maintained by the authors of this work.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3