Facial action units detection using temporal context and feature reassignment

Author:

Yang Sipeng12ORCID,Huang Hongyu2,Huang Ying Sophie3,Jin Xiaogang12ORCID

Affiliation:

1. State Key Lab of CAD&CG Zhejiang University Hangzhou China

2. School of Computer Science and Technology Zhejiang University Hangzhou China

3. School of Management Zhejiang University Hangzhou China

Abstract

AbstractFacial action units (AUs) encode the activations of facial muscle groups, playing a crucial role in expression analysis and facial animation. However, current deep learning AU detection methods primarily focus on single‐image analysis, which limits the exploitation of rich temporal context for robust outcomes. Moreover, the scale of available datasets remains limited, leading models trained on these datasets to tend to suffer from overfitting issues. This paper proposes a novel AU detection method integrating spatial and temporal data with inter‐subject feature reassignment for accurate and robust AU predictions. Our method first extracts regional features from facial images. Then, to effectively capture both the temporal context and identity‐independent features, we introduce a temporal feature combination and feature reassignment (TC&FR) module, which transforms single‐image features into a cohesive temporal sequence and fuses features across multiple subjects. This transformation encourages the model to utilize identity‐independent features and temporal context, thus ensuring robust prediction outcomes. Experimental results demonstrate the enhancements brought by the proposed modules and the state‐of‐the‐art (SOTA) results achieved by our method.

Publisher

Wiley

Reference37 articles.

1. What Research Says to the Teacher;Miller PW,1988

2. Facial action coding system: a technique for the measurement of facial movement;Friesen E;Palo Alto,1978

3. Facial Emotion Expressions in Human–Robot Interaction: A Survey

4. Video-driven state-aware facial animation

5. Facial expression animation through action units transfer in latent space

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3