Affiliation:
1. The Seventh Research Division Beihang University Beijing People's Republic of China
Abstract
AbstractA stochastic model predictive control (MPC) framework is presented in this paper for nonlinear affine systems with stability and feasibility guarantee. We first introduce the concept of stochastic control Lyapunov–Barrier function (CLBF) and provide a method to construct CLBF by combining an unconstrained control Lyapunov function (CLF) and control barrier functions. The unconstrained CLF is obtained from its corresponding semi‐linear system through dynamic feedback linearization. Based on the constructed CLBF, we utilize sampled‐data MPC framework to deal with states and inputs constraints, and to analyze stability of closed‐loop systems. Moreover, event‐triggering mechanisms are integrated into MPC framework to improve performance during sampling intervals. The proposed CLBF based stochastic MPC is validated via an obstacle avoidance example.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献