Modulation of animal and plant tissue growth with collagen‐starch‐organic molybdenum networks hydrogel biomatrices

Author:

Valdés‐Lozano Claudia I.1,Claudio‐Rizo Jesús A.1ORCID,Cabrera‐Munguía Denis A.1,León‐Campos Maria I.1ORCID,Mendoza‐Villafaña Juan J.1,Becerra‐Rodriguez Juan J.2

Affiliation:

1. Facultad de Ciencias Químicas Universidad Autónoma de Coahuila Saltillo Coahuila Mexico

2. Ingeniería en Biotecnología Universidad Politécnica de Pénjamo Guanajuato Mexico

Abstract

AbstractThe development of hydrogel biomatrices with potential to modulate animal and plant tissue growth is ongoing. In this study, molybdenum bio‐metal–organic frameworks (MOFs) (Mo‐bioMOFs) incorporating essential amino acids such as l‐histidine (Mo‐His), l‐phenylalanine (Mo‐Phe), and l‐tryptophan (Mo‐Trp) were encapsulated in semi‐interpenetrating polymer network (semi‐IPN) hydrogels composed of collagen and starch. The structure and properties of these materials show dependence on the amino acid that constitutes the Mo‐bioMOFs. The biomatrices have a semi‐crystalline surface with increased porosity when using Mo‐His; this system also benefits swelling. Increased crosslinking, acceleration in gelation, and mechanical improvement are observed for the system based on Mo‐Phe. Methylene blue release experiments were conducted, demonstrating that matrices including Mo‐bioMOFs exhibit controlled release profiles, indicating highly stable retention of Mo‐bioMOFs in the semi‐IPN matrix. The biomatrices enhance the metabolism and proliferation of fibroblasts and monocytes, with Mo‐Trp reducing the secretion of inflammatory cytokines like TNF‐α. The biomatrices exhibit gradual and slow mass loss when exposed to collagenase and commercial vegetable substrates. Both leaf and root cells of tomato plants (Solanum lycopersicum) show increased metabolism and growth when exposed to Mo‐Phe and Mo‐His. Notably, the biomatrix containing Mo‐Phe promotes the most substantial plant growth and foliage after 30 days. These biomatrices have potential applications in chronic wound healing and agriculture.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3