Mapping tree cover expansion in Montana, U.S.A. rangelands using high‐resolution historical aerial imagery

Author:

Morford Scott L.1ORCID,Allred Brady W.23,Jensen Eric R.14,Maestas Jeremy D.5,Mueller Kristopher R.1,Pacholski Catherine L.6,Smith Joseph T.1,Tack Jason D.7,Tackett Kyle N.6,Naugle David E.2

Affiliation:

1. Numerical Terradynamic Simulation Group University of Montana Missoula Montana 59812 USA

2. University of Montana, W. A. Franke College of Forestry and Conservation Missoula Montana 59812 USA

3. Google Mountain View California 94043 USA

4. Desert Research Institute Reno Nevada 89512 USA

5. United States Department of Agriculture Natural Resources Conservation Service Portland Oregon 97232 USA

6. United States Department of Agriculture Natural Resources Conservation Service Bozeman Montana 59715 USA

7. United States Fish and Wildlife Service, Habitat and Population Evaluation Team Missoula Montana 59812 USA

Abstract

AbstractWorldwide, trees are colonizing rangelands with high conservation value. The introduction of trees into grasslands and shrublands causes large‐scale changes in ecosystem structure and function, which have cascading impacts on ecosystem services, biodiversity, and agricultural economies. Satellites are increasingly being used to track tree cover at continental to global scales, but these methods can only provide reliable estimates of change over recent decades. Given the slow pace of tree cover expansion, remote sensing techniques that can extend this historical record provide critical insights into the magnitude of environmental change. Here, we estimate conifer expansion in rangelands of the northern Great Plains, United States, North America, using historical aerial imagery from the mid‐20th century and modern aerial imagery. We analyzed 19.3 million hectares of rangelands in Montana, USA, using a convolutional neural network (U‐Net architecture) and cloud computing to detect tree features and tree cover change. Our bias‐corrected results estimate 3.0 ± 0.2 million hectares of conifer tree cover expansion in Montana rangelands, which accounts for 15.4% of the total study area. Overall accuracy was >91%, but the producer's accuracy was lower than the user's accuracy (0.60 vs. 0.88) for areas of tree cover expansion. Nonetheless, the omission errors were not spatially clustered, suggesting that the method is reliable for identifying the regions of Montana where substantial tree expansion has occurred. Using the model results in conjunction with historical and modern imagery allows for effective communication of the scale of tree expansion while overcoming the recency effect caused by shifting environmental baselines.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Computers in Earth Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3