Dual RNA sequencing during Trichoderma harzianumPhytophthora capsici interaction reveals multiple biological processes involved in the inhibition and highlights the cell wall as a potential target

Author:

Wang Weizhen1ORCID,Wang Haidong1,Zhang Zhuzhu1,Li Wenzhi1,Yin Xianhui1,Long Youhua1ORCID

Affiliation:

1. Institute of Crop Protection, College of Agriculture Guizhou University Guiyang People's Republic of China

Abstract

AbstractBACKGROUNDPhytophthora capsici is a destructive oomycete pathogen, causing huge economic losses for agricultural production. The genus Trichoderma represents one of the most extensively researched categories of biocontrol agents, encompassing a diverse array of effective strains. The commercial biocontrol agent Trichoderma harzianum strain T‐22 exhibits pronounced biocontrol effects against many plant pathogens, but its activity against P. capsici is not known.RESULTST. harzianum T‐22 significantly inhibited the growth of P. capsici mycelia and the culture filtrate of T‐22 induced lysis of P. capsici zoospores. Electron microscopic analyses indicated that T‐22 significantly modulated the ultrastructural composition of P. capsici, with a severe impact on the cell wall integrity. Dual RNA sequencing revealed multiple biological processes involved in the inhibition during the interaction between these two microorganisms. In particular, a marked upregulation of genes was identified in T. harzianum that are implicated in cell wall degradation or disruption. Concurrently, the presence of T. harzianum appeared to potentiate the susceptibility of P. capsici to cell wall biosynthesis inhibitors such as mandipropamid and dimethomorph. Further investigations showed that mandipropamid and dimethomorph could strongly inhibit the growth and development of P. capsici but had no impact on T. harzianum even at high concentrations, demonstrating the feasibility of combining T. harzianum and these cell wall synthesis inhibitors to combat P. capsici.CONCLUSIONThese findings provided enhanced insights into the biocontrol mechanisms against P. capsici with T. harzianum and evidenced compatibility between specific biological and chemical control strategies. © 2024 Society of Chemical Industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3