Stochastic approach for remaining fatigue life prediction considering parametric distributions

Author:

Ho Hsin Shen1,Liu Shizhou1,Zhang Erliang1

Affiliation:

1. School of Mechanical and Power Engineering Zhengzhou University Zhengzhou China

Abstract

AbstractIn the present work, a stochastic framework, which combines the well‐recognized linear damage rule (LDR) and the uncertainty of material properties under constant amplitude loading, is proposed to improve the accuracy in prediction of remaining fatigue life. The uncertainty quantification approach based on parametric statistics is employed together with the Monte‐Carlo simulation method for modeling the randomness of remaining fatigue life. The impact of several commonly‐used parametric statistics is investigated, and the pertinent one is identified utilizing the Kullback‐Leibler divergence. The proposed framework is validated through the use of experimental fatigue life data under two‐step loading test.

Publisher

Wiley

Subject

Management Science and Operations Research,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3