Affiliation:
1. Electronics and Communication Engineering Department Indian Institute of Information Technology Allahabad India
Abstract
AbstractHepatocellular carcinoma has been the leading cause of death in recent centuries and with the advent of newer technologies, several thermal and cryo‐ablation techniques have been introduced in the recent past. In this regard, microwave ablation has developed into a promising method for thermal ablation technique. However, due to clinical obligations, in‐vivo analysis is not feasible and ex‐vivo analysis is inaccurate due to changes in the electrical and thermal properties of the tissue. Therefore, in this study, temperature‐dependent permittivity, electrical conductivity, and thermal conductivity along with phase change effect due to temperature reaching above 100°C are incorporated using finite element method model. Further, using an intertwined normal mode helical antenna ablation probe, a change in resonant frequency (Δf) and reflection coefficient (ΔS11) from the actual value (antenna parameter in the air at 5 GHz) is modeled using second‐order polynomial curve fitting to predict the surrounding permittivity in the range of 30–70. A maximum deviation of 0.8 value in permittivity from the actual value is observed. However, to obtain a generalized methodology, XG Boost and CAT Boost algorithms are used. Further, since ablation diameter plays a crucial role in achieving optimal tumor ablation, an artificial neural network (ANN) algorithm with three different optimizers is incorporated to predict ablation diameter using five critical parameters. Such an ANN algorithm which can predict the transversal and axial ablation zone may provide optimal ablation outcomes.
Subject
Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献