Affiliation:
1. Department of Mathematical and Statistical Sciences Marquette University Milwaukee Wisconsin USA
2. Department of Intelligent Systems and Data Science Persian Gulf University Bushehr Bushehr Province Iran
3. Department of Actuarial Studies and Business Analytics Macquarie University Sydney New South Wales Australia
Abstract
AbstractWe introduce two novel nonparametric forecasting methods designed for functional time series (FTS), namely, functional singular spectrum analysis (FSSA) recurrent and vector forecasting. Our algorithms rely on extracted signals obtained from the FSSA method and innovative recurrence relations to make predictions. These techniques are model‐free, capable of predicting nonstationary FTS and utilize a computational approach for parameter selection. We also employ a bootstrap algorithm to assess the goodness‐of‐prediction. Through comprehensive evaluations on both simulated and real‐world climate data, we showcase the effectiveness of our techniques compared to various parametric and nonparametric approaches for forecasting nonstationary stochastic processes. Furthermore, we have implemented these methods in the Rfssa R package and developed a shiny web application for interactive exploration of the results.
Funder
National Science Foundation
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献